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Abstract
Multi-Object Tracking is one of the main tasks in computer vision. It deals with the real-
time detection and tracking of several objects across video frames. This paper discusses and
compares three MOT algorithms: SORT, DeepSORT, and JDE on pedestrian tracking in
urban scenes. A brief discussion on some important theoretical aspects such as online vs of-
fline tracking, the use of Kalman filters, data association methods, and the use of appearance
features for identity continuity is presented. The three tracking algorithms are practically
evaluated based on theoretical knowledge on the MOT16 and MOT17 benchmark datasets.
The algorithms were tested under similar conditions using standard MOT metrics MOTA,
MOTP, IDF1 and number of identity switches along with visual inspection. Results state
that SORT is fast and simple but does not maintain consistent identities most of the time;
DeepSORT does better by adding appearance features; JDE does even better by combining
detection and feature embedding into one model at a cost of increased computational com-
plexity. Implementation issues are also discussed, and future work will include testing newer
models for better runtime efficiency and adaptability to real-world tracking scenarios.

Keywords: Multi-Object Tracking, SORT, Pedestrian Tracking, Appearance Features, Com-
puter Vision.

1. INTRODUCTION

Multi-Object Tracking (MOT) is a task in computer vision that aims to find and follow multiple
objects as they change over time in a sequence of frames. Given a stream of video or image se-
quences, the goal of MOT is to estimate the trajectories of all objects by associating their detections
over time. MOT has several important real-world applications like traffic monitoring, intelligent
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video surveillance, autonomous driving, human-computer interaction, and sports analytics. The
challenge with MOT compared to single-image object detection is that it needs to reason not just
about space but also about time; this temporal dimension adds more complexity such as dealing
with occlusions between objects, entry/exit from the field of view and sudden changes in motion or
appearance [1].

At its most basic level, MOT can be thought of as a joint optimization problem where the system
decides which object detection across consecutive frames belongs to the same physical object. The
Tracking-by-Detection paradigm has been dominant in this area; here, an object detector is first
run on every individual frame in the sequence followed by some data association algorithm linking
these detections together into continuous trajectory [2].

Traditional approaches for MOT predominantly employed probabilistic models and hand-crafted
features in the tasks of motion prediction and object association. However, with the introduction of
deep-learning approaches, it has shifted the paradigm for tracking and dramatically increased per-
formance. Convolutional Neural Networks are frequently used to extract appearance features, while
more recent architectures based on transformers and graph neural networks provide sophisticated
methods to encode spatial and temporal relations. These advances boost not only accuracy, but also
generalization performance in complex and crowded scenes. Nevertheless, despite the advancement
of deep learning, MOT is still a very difficult task that requires dealing with heterogeneous object
appearances, complex motion, occlusion, varying numbers of targets, and incomplete detections.
Assigning identities consistently over time is a key challenge, particularly when dealing with oc-
clusion, and for visually similar targets, highlighting the need for intelligent spatial, temporal and
appearance feature integration [3, 4].

MOT methods are typically organized along different axes, such as, for instance:

• Detection-based versus detection-free tracking; online MOT versus offline MOT; 2D MOT
versus 3DMOT. Detection-based tracking often uses object detectors to initialize tracks auto-
matically, while detection-free tracking usually requires manual initialization and has a fixed
number of objects throughout the sequence [2].

• Online methods perform data association using only past and current frames, which is suitable
for real-time applications. Offline methods take advantage of future information and generally
achieve higher accuracy at the expense of increased latency [2, 3].

• 2D vs. 3D MOT: Traditional 2D MOT systems run on image plane coordinates, whereas
3D MOT employs measurements from depth sensors or LiDAR to perform tracking in world
coordinates. This allows enhanced spatial reasoning for deployments in the real world [3].

The selected algorithms reflect themost significant developments in the area: SORT andDeepSORT
provide solid baselines, with DeepSORT incorporating appearance features to enhance identity
continuity, FairMOT and JDE merge detection with Re-ID into one network, ByteTrack enhances
tracking by taking advantage of low-confidence detections, Tracktor++ makes use of a detector to
simplify tracking and MOTR presents an end-to-end transformer-based approach.
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Performance inMOT is typically evaluated using standard datasets such asMOTChallenge (MOT16,
MOT17, MOT20) with metrics includingMultiple Object Tracking Accuracy (MOTA), ID F1 score
(IDF1), and the number of ID switches and many more [3, 4].

This paper reviews the comparative performance of different state-of-the-art MOT algorithms on
image sequences. The goal is to evaluate their performance in a variety of settings and understand
their relative strengths and weaknesses across quantitative metrics and qualitative observations. In
subsequent chapters, we discuss first real-world applications ofMOT, second an overview of typical
pitfalls encountered when running tracking tasks. Next, we present a fundamental basis for MOT,
which consists of detection models, appearance modeling, and performing data association. The
procedure for evaluating datasets and performance metric is discussed in depth. We then present
experimental results in comparison for several selected algorithms, and we offer some research
implicit to the results we present.

2. APPLICATION OF MOT IN REALWORLD SCENARIOS

Multiple Object Tracking (MOT), also referred to as Multi-Target Tracking, is the leading task of
computer vision that explores video streams for the purpose of discovering and tracking multiple
objects from different categories, including pedestrians, cars, animals, and objects, with no previous
knowledge of their appearance or actual number. The objectives of MOT are to discover objects in
video frames, associate these objects over time, and estimate their trajectories in the environment.
Dramatic improvements in accuracy and practical applicability to real-world scenarios of MOT,
based on advances in deep learning, have occurred in the past decade [2, 3].

MOT has a variety of applications, including but not limited to, intelligent traffic management and
surveillance in smart cities, autonomous intelligent driving, analysis, and tracking of sporting events
and performance, medical imaging and medical analysis, and in retail analytics. A unique set of
challenges and requirements exists for suitable and tailored solutions for each of these applications
which exemplify the flexibility ofMOT to improve efficiency and safety inmany environments. The
subsequent sections will elaborate on each of these domains and consider howMOT aids efficiency
and decision-making in each scenario.

2.1 Autonomous Driving

MOT is essential to road safety by detecting, identifying, and tracking pedestrians, vehicles, and
objects, facilitating the avoidance of collisions, navigation, and planning of infrastructure. The
accurate tracking of pedestrian and vehicle movements is paramount to road safety; this tracked
information is the substrate of navigation systems and assists in developing functions such as col-
lision avoidance and lane-keeping assistance. MOT can enhance compliance with traffic rules by
providing camera-based systems with the ability to reference identified vehicles and detect traffic
rule violations including speeding, drifting out of lane, and illegal parking. Vehicle re-identification
techniques are already employed in toll enforcement and fleet monitoring [3].
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2.2 Surveillance and Security

MOT is used in surveillance to track people and objects across camera networks while monitoring
the environment in real-time. This can be critical for crowded or high-security public environments
(e.g., airports, train stations, public events, etc.) that require situational awareness and surveillance.
MOT combined with person re-identification can help surveillance systems achieve persistent track-
ing of people who cross the views of different cameras or are temporarily occluded [1].

2.3 Sports Analytics

MOT is also widely used in sports for real-time tracking of players, balls, and other equipment.
This tracking enables analysts and coaches an opportunity to capture movement patterns, assess
performance, and extract strategic information. It is also essential for goal and wicket evaluation,
where it operates by following the trajectory of the ball in conjunction with the critical moments of
player positioning [12, 21].

2.4 Robotics and Human-Computer Interaction (HCI)

MOT is important in robotics and HCI by following object and human trajectories to facilitate navi-
gation and interaction in dynamic settings. Through its use, robots can learn human gestures, prevent
obstacles, and adapt to their environment, providing functionality and better user experience. Using
thermal or IR camera systems or deep learning models increases accuracy and reliability in difficult
conditions and situations [3].

2.5 Medical Imaging and Biomechanics

MOT has become an important aspect in a range of real-world applications. It is especially used
in areas that require the monitoring of dynamic, yet complicated systems. In biomedical imaging,
MOT allows us to accurately track multiple particles, be it molecules, drug carriers, or cancerous
cells, allowing scientists to begin to study disease progression, drug delivery mechanisms, and
cellular interactions at an advanced level. High accuracy and robustness are a necessity for these
applications, as there is considerable noise in data or high-density environments. The growth of deep
learning has been beneficial in this regard, as it provides improved tracking performance through
increased accuracy, scaling, and handling occlusion difficulties [3, 13].

The various applications demonstrate the significance of MOT across a wide array of real-world
problems. The advancements in technology, especially deep learning, represent step changes in
addressing major real-world issues such as occlusion, large data volumes, and efficiency. This
increased advancement is helping to broaden the applicability of MOT systems as well as making
them more efficient.
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3. CHALLENGES IN MULTI OBJECT TRACKING

Despite the progress made in MOT, through the application of deep learning for detection and
associate, there are still numerous challenges that limit tracking accuracy. These challenges stem
from various environmental, data quality, and algorithmic factors, and all are actively researched
topics.

3.1 Occlusion and Object Overlap

Occlusion is a huge challenge inMOT. Objects often traverse behind each other or beyond visibility
range causing missed detection and track breakages. This frequently leads to identity swaps or dis-
jointed tracks particularly in dense scenarios such as pedestrian walkways or vehicle intersections.
Occlusion missed detections will lead to broken tracks and overall tracking performance decrease,
therefore occlusion handling has become a significant focus in MOT [3, 4].

3.2 Appearance Similarity Among Objects

In situations where there are multiple similarly looking objects (such as people in uniform, or
identical vehicles), data association may be untrustworthy. Low resolution images, and absence
of unique information (such as license plates or face) make this challenging even if the objects are
at some distance. Deep appearance embeddings help, but are in general insufficient to separate
objects that have the same visual appearance. Therefore, the trackers may mistake two identities
and switch them frequently very often [3, 4].

3.3 Unexpected Motion and Unpredictable Trajectories

Simple motion models, such as constant velocity and Kalman filters, assume smooth and continuous
object dynamics. In reality, objects can stop, turn quickly, and accelerate unpredictably, which
breaks these assumptions and leads to poor predictions and broken tracks. To handle nonlinear
motion, more flexibility is needed, learned motion models [3].

3.4 Variable Object Counts

The number of visible objects in a scene can change quickly as new ones come in or existing ones
go out of the frame. So, MOT algorithms must be able to accurately start new tracks when objects
show up and safely end them when objects are no longer seen. Errors made in dealing with these
changes can produce false positives, whether because an object has been kept without it existing,
or because an object is duplicate, or can produce false negatives because an object tracked has not
been tracked at all. Either way, it has an impact on the consistency and completeness of the end
trajectories. [4].
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3.5 Scale Variation and Illumination Changes

Tracking performance can be impacted by changes in both object scale and lighting conditions.
Objects can appear small due to distance or camera zoom and can introduce issues due to visual detail
missing for detection and re-identification purposes. Similarly, whether shadows or reflections or
in cases of low-light details can change appearances across frames and impact detection or trigger
of identity switches. These conditions directly affect appearance-based tracking models, which rely
on appearance properties being unchanged. To better the robustness of MOT approaches, the use of
scale-invariant representations and the ability to be resilient to lighting changes using motion and/or
temporal cues would need to be better integrated into the designs [1, 3, 4].

3.6 Camera Motion and Scene Dynamics

When it comes to moving cameras, as in the case of UAV/Drone footage, autonomous driving (e.g.
self-driving cars, etc.), or handheld video, MOT systems face additional challenges of separating
object motion from ego-motion. Changes to the background due to motion, as well as changes to
the camera or observer-egomotion (being the user as individual moving camera) creates distortion
to the spatial consistency across frames [5].

These differences affect appearance, and motion readings, increasing the chances of tracking errors,
particularly for small or fast-moving objects. Established trackers, which were developed for static
scenes, are typically cumbersome to use for motion-based scenes. As a result, newer methods have
integrated motion compensation or camera estimation techniques to ensure tracker consistency in
dynamic scenes.

3.7 Spatial Information Loss

Most visual tracking systems, especially when using standard CCTV video footage, function in 2D
video, employing a monocular camera. When a complicated 3D scene is recorded, a monocular
camera compresses the scene into a two-dimensional representation, will also suffer a loss of depth-
related information. Converting a scene from the real world to a numerical digital format always
involves some level of abstraction and may introduce some imprecision creating the actual scene
surface-recorded data. This loss of spatial context complicates an algorithm’s ability to detect and
track an object(s) consistently, especially when occlusion occurs or due to complex scene geometry
in the physical world [3].

4. AN OVERVIEW OF MOT ALGORITHMS

As mentioned in the previous chapter, Multi-Object Tracking is the process used for identifying
and following the trajectories of multiple objects within a video sequence by detecting them in
each frame and maintaining their identities across time. Most MOT algorithms adopt a multi-step
processing architecture, where each stage handles a distinct aspect of the tracking process, described
in FIGURE 1.
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Figure 1: MOT algorithm workflow [1]

1. Detection Stage: Each video frame is processed by an object detector to locate all instances of
the target class (e.g., people, vehicles) using bounding boxes. These detections are the starting
point for tracking. (e.g. common trackers are YOLO, CenterNet, and Faster R-CNN) [1]

2. Future extraction and motion prediction: To track objects consistently, the system extracts
feature like appearance (e.g., deep embeddings), motion (e.g., velocity), and object interac-
tions. A motion model, such as a Kalman filter, may also predict where each object is likely
to appear in the next frame [1]

3. Similarity Computation Stage: This step calculates how likely each new detection matches
existing tracks by comparing their features and predicted positions. The results form an affinity
matrix used to measure similarity between objects across frames

4. Association Stage: The system utilizes the affinity scores as a basis for linking detections
to ongoing tracks, and assigns them consistent IDs. The Hungarian algorithm or learned
matching networks are among the techniques used to create these associations, even in difficult
or populous locations

Moreover, MOT algorithms are divided into online and offline (batch) methods, according to their
video frame processing capability.

• Online tracking: operates in real time, relying solely on the current and past frames for up-
dating the object trajectories. Nevertheless, since they lack future information, they usually
find it hard to rectify the earlier errors and consequently might be less accurate in the overall
results. Nevertheless, these methods are a necessity for time-critical applications such as
autonomous driving and video surveillance. (e.g., SORT, DeepSORT, and FairMOT that link
fresh discoveries to existing tracks on a frame-by-frame basis) [1, 4].
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• Offline (batch) tracking: the entire video sequence is processed simultaneously, utilizing both
past and future frames. These algorithms can execute global optimization, and the accuracy of
their object identity refinement is comparatively higher. Hence, they are employed in areas that
do not demand instant results, like video evidence analysis or offline scene comprehension.
The reason batch trackers produce more dependable and uniform trajectories is that they are
able to rectify the early mistakes through future context.

4.1 Tracking Paradigms

Different methods have been developed to solve the task of tracking multiple objects in videos.
Thesemethods, known as tracking paradigms, define how detection and tracking steps are organized
and connected. In this chapter, to begin with, we present and examine the three primary MOT
paradigms which are Detection-Based Tracking (DBT), Detection-Free Tracking (DFT), and Joint
Detection and Tracking (JDT). The handling of object detection and identity matching varies with
each approach. The comprehension of these paradigms plays a vital role in the selection of the
suitable method for tracking troubles and real-world applications.

4.1.1 Detection based tracking (Dbt)

Detection-Based Tracking (DBT), also referred to as Tracking-by-Detection (TBD), is one of the
most widely used techniques in Multi-Object Tracking. In FIGURE 2.2, we can see that the objects
are detected in every frame with the help of a pre-trained object detector, and subsequently, these
detections are connected through time to create object paths.

The procedure is carried out in two major steps:

• Object detector: It is trained in specific object types such as people, cars, or faces. It will
detect and locate objects in every frame with the assistance of bounding boxes or segmentation
masks.

• Tracker: It employs the position and appearance features of these detections to link them
through the frames and create continuous tracks [5, 7].

The distinction between detection and tracking contributes to the simplification of the overall task,
making it more manageable to develop and improve each part separately. DBT methods can be
executed in online or offline modes. This is based on the usage of past information only or of the
entire video sequence by the tracking algorithm. One of the main limitations of DBT is that it is
very much dependent on the reliability of the object detector: if the objects are missed or wrongly
detected, the tracker might either lose the object or assign a wrong identity [2].

4.1.2 Detection free tracking (DFT)

Detection-Free Tracking (DFT) is a term used to describe the methods where objects are tracked
without the help of an object detector. Instead, the tracker is initializedmanually or semi-automatically
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in the first frame, and the object’s position is updated across frames using motion information such
as optical flow or Kalman filtering. Since DFT does not detect new objects entering the scene,
it is better suited for controlled environments with limited targets. However, it often struggles in
crowded scenes or under occlusions [2].

4.1.3 Joint detection and tracking(JDT)

Recent MOT research has shifted toward models that combine detection and tracking in a single,
unified system. Joint Detection and Tracking (JDT) or Joint Detection and Embedding (JDE)
approaches use deep learning to perform both tasks simultaneously often through a single neural
network trained end-to-end [10]. This means the system does not need a separate, pre-trained object
detector. The JDE model learns to find objects in the frame and track them across time as part of
the same training process [4].

Common examples include FairMOT and JDE, which use a shared feature backbone to produce
bounding boxes and identity embeddings in a single stage at inference time [6]. This strategy also
has some downsides when objects frequently appear and disappear from the frame or when some
objects are not present in all frames. Since detection and tracking are learned jointly, failure in one
can propagate to the other, making it more challenging to keep consistent object identities through
occlusions or missed detections.

The three MOT paradigms each have their own strengths and weaknesses. Since each of these
approaches has its own advantages and is better suited for specific tasks, there is no one-size-fits-all
solution. A comparison between all the paradigms presented earlier is shown in TABLE 1.

Table 1: Summary of tracking paradigms
ccc

DBT DFT JDE
Detection Pre-trained detector No detector (manual initialization) Detection and track-

ing in one network
Object classes Predefined Tracks initial object only Learning to track

without class labels
New Object Can detect new objects Cannot detect new entries Can track and detect

new instances
Example SORT, DeepSORT Optical Flow, Kalman Filter JDE, FairMOT,

MOTR

4.2 Referenced Tracking Algorithms

In this section a set of important tracking algorithms are introduced, and the scope is to show how
Multi-Object Tracking (MOT) has developed over time, from traditional motion-based methods to
newer deep learning models. The algorithms are grouped based on how they handle detection, how
they are built, and whether they use appearance features.

393



https://jaiai.org/ |November 2025 Maria Cãzilã, Remus Brad and Raluca Brad.

4.2.1 Classical trackers

SORT (Simple Online and Realtime Tracking), proposed by Bewley [7], is famous for its simplicity
and fast performance. Predictions are matched to fresh detections in each frame with the Hungarian
algorithm, and a Kalman filter is used for motion prediction. The ability to operate on hundreds of
frames per second in real time is also one of its greatest strengths and is well suited to applications
where speed is the critical requirement. As SORT is based on object positions rather than appear-
ance, it can be applied with any object detector in a straightforward manner. But it does have one
downside: when objects overlap or appear similar, they cannot recognize or find them solely by
their appearance.

DeepSORT extends SORT with additional identities for better tracking by using appearances, as in
Wojke [5]. This involves instance-wise feature extraction (Re-ID embeddings) from each detected
object based on a deep neural network. These features allow the tracker to distinguish between
things, even if they are close, occluded, or go off screen and come back. This reduces the number of
identity switches, as a result making DeepSORTmore robust when it comes to crowded or cluttered
scenes. Although more powerful compared to SORT, it is not computationally expensive and can
work well for online systems. This trade-off between speed and accuracy has made DeepSORT
attractive in several state-of-the-art tracking applications.

4.2.2 Deep learning trackers

FairMOT is a representative real-time MOT framework with the joint detection and embedding
(JDE) paradigm, which conducts object detection and appearance embedding within the same neural
network simultaneously. In contrast to the standard tracking-by-detection methods, where detection
and re-identification (ReID) are conducted in two separate steps, FairMOT incorporates these two
tasks in one single pipeline with CenterNet as its backbone. Developed by Zhang [6], presents a
two-branch architecture, which consists of an object detection branch and an appearance feature
branch. These branches are jointly learned by sharing their convolutional layers.

ByteTrack, proposed by Zhang [8], enhances MOT by employing a simple but effective princi-
ple: keep low-confidence detections during data association. Standard trackers ignore such de-
tections, while ByteTrack associates high-confidence detections with existing tracks and utilizes
low-confidence ones for the recovery of missing tracks. This strategy decreases missing detections
and identity fragmentation, particularly in scenes with dense populations. It is one of the methods
that does not use appearance features or a Re-ID module, but still achieves competitive performance
on benchmarks, such as MOTA.

Tracktor++, proposed by Bergmann [9], is a tracking-by-detection approach that reuses the re-
gression head of a Faster R-CNN detector to predict object positions across frames, effectively
turning the detector into a tracker. Unlike traditional methods that rely on explicit motion models or
data association, Tracktor++ regresses previous bounding boxes to new positions and then applies
non-maximum suppression to maintain track consistency. To improve tracking under occlusion, it
integrates a Re-Identification (ReID) module and a simple Kalman filter for handling track reacti-
vation.
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JDE (Joint Detection and Embedding), presented by Wang et al. [10], integrates object detection
and Re-ID embedding into a single, real-time deep learning model. Unlike traditional pipelines that
use separatemodels for detection and identity features, JDE trains both jointly use a shared backbone
(e.g. YOLOv3). This design allows the tracker to run faster while maintaining competitive accuracy
in both detection and identity tracking.

MOTR (Multiple Object Tracking with Transformers), which was recently proposed in Zeng et
al. [11], is a contemporary tracker that enables simultaneous detection and tracking within a single
model because of the changes caused by transformers. MOTR introduces the idea of track queries,
which enables the model to recall an object’s identity across multiple frames because of attention.
MOTR is simply an extension of DETR, a transformer-style object detection algorithm, to workwith
video sequences rather than individual images. Therefore, MOTR is able to tract objects through
time, without the typical associated step, like a Kalman filter or a Hungarian algorithm.

Table 2: Summary of most common algorithms
c

Tracker Year Detection Re-ID Joint detection
+Tracking Architecture

SORT [7] 2016 Public No No Kalman Filter + Hungarian Algorithm
DeepSORT [5] 2017 Public Yes No CNN Re-ID + Kalman Filter
FairMOT [6] 2020 Private Yes Yes CenterNet +Re-ID
ByteTrack [8] 2021 Both No No IoU based two stagematchingwith low

confidence boxes
Tracktor ++ [9] 2019 Public Optional No Fast R-CNN regression-based tracking
JDE [10] 2020 Private Yes Yes Shared YOLOv3 +Re-ID
MOTR [11] 2022 Private Yes Yes Transformers + track queries (DETR)

5. DATASETS FOR MOT ASSESSMENT

The MOTChallenge is the overall benchmark to test and compare multi-object tracking algorithms.
It provides standard benchmarks or datasets, annotation formats, and evaluation format to enable
fair and consistent comparisons among tracking algorithms. The official benchmark consists of,
and are described in TABLE 3 to ease description, several datasets: MOT16, MOT17 [30], MOT20
[29] which all contain real-life video sequences with annotated pedestrian tracks in challenging
environments such as crowded streets, moving cameras, and occlusions.

Table 3: MOTChallenge Dataset description [31]

Dataset Total Videos
(train, test) Detectors Total

Frames
Total
Tracks

Bounding
Boxes Density of People

MOT-16 14 DPM 11235 1276 292733 moderate
MOT-17 14 DPM, FRCNN, SDP 17757 2355 564228 moderate to high
MOT-20 8 Faster R-CNN 13410 3833 2102385 extremely high
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There are ground truth values available for the training set of MOT, and that is why they would
be useful for comparing predicted results to correct object positions and identities so that we can
precisely measure metrics for evaluation.

In FIGURE 2 we can visualize frames from the MOT16 training set, we visualize the ground truth
bounding boxes. In FIGURE 2. left, the left side shows frame 90 without any boxes, while the right
side displays the same frame with ground truth bounding boxes overlaid. FIGURE 2 right presents
frame 131 from the same sequence. As observed, the man in the red jacket is consistently tracked
across these frames, demonstrating correct identity preservation by the annotations.

Figure 2: MOT16 frame 90 and MOT16 frame 131 toghether with the MOT detection.

Public detections are provided so that different algorithms can be evaluated fairly using the same
detection inputs, focusing only on tracking performance. The benchmark also supports private
detections, allowing researchers to use their own detectors if desired, with separate leaderboards for
both.

MOTChallenge includes baseline algorithms, code, and trainingmethodologies as starting points for
researchers. Participants can submit their results to the official website, where progress is tracked
using leaderboards ranked primarily byMOTA (Multi-Object Tracking Accuracy), along with other
metrics like IDF1,MT (Mostly Tracked), andML (Mostly Lost) [3].

Each dataset is divided into training videos and testing videos. The training videos include the
following key folders and files:

Img1: Contains all video frames as individual .jpg images, named using 6-digit frame numbers
starting from 000001.jpg.
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Gt/gt.txt: This file provides the ground truth annotations used for training and evaluation. Each line
includes information such as <frame>, <id>, <bb_left>, <bb_top>, <bb_width>, <bb_height>,
<conf>, <x>, <y>, <z>.

Det/det.txt: Public detection file provided for tracking-by-detection algorithms.

Seqinfo.ini: Configuration file that contains data about the sequence. [31]

The structure of the output file and gt.txt should be the same size. For the 2D tracking challenge, the
last three values (x, y, z) can be set to -1 because they are ignored. For the 3D tracking challenge,
the bounding box fields are ignored.

In ground truth files, the conf value acts as a flag: zero means the object is ignored, and any other
value includes it in the evaluation. In contrast, in detection result files the conf value represents the
confidence score of the detection and is used to indicate the reliability of the detected object.

6. EVALUATION METRICS

To evaluate how well a MOT system works, we use standard evaluation metrics. A good MOT
system should detect all objects in each frame and keep the same ID for each object throughout the
video. The metrics check if the tracker can follow each object accurately, even with occlusions,
missing frames, or when objects enter or leave the scene.

CLEAR MOT metrics evaluate the accuracy of a multi-object tracking (MOT) system by com-
paring the predicted object positions to the actual ones. For each frame t, we assume there is a
set of ground truth objects (𝑜1, 𝑜2, . . . , 𝑜𝑛) and a set of tracker predictions, called hypotheses
(ℎ1, ℎ2, . . . , ℎ𝑚). The evaluation process begins by finding the best matches between each object
𝑜𝑖 and prediction ℎ 𝑗 , then measuring errors for incorrect matches, missed detections, and false
positives [30].

To match an object 𝑜𝑖 with a hypothesis ℎ 𝑗 , a distance 𝑑𝑖 𝑗 , is calculated and must be smaller than
a predefined threshold T. The type of distance used depends on how the object is represented, for
example, 2D or 3D Euclidean distance for points and Intersection over Union (IoU) for bounding
boxes. For every frame in the video, the following steps are used to perform the mapping between
ground truth objects and tracker predictions:

1. If object 𝑜𝑖 and hypothesis ℎ 𝑗 were matched in the previous frame, and their distance 𝑑𝑖 𝑗 is
less than the threshold T in the current frame, the same match is kept avoiding breaking the
track [30].

2. Match all unmatched 𝑜𝑖 to ℎ 𝑗 , allowing only one-to-one pairs only when 𝑑𝑖 𝑗 < T. If a new
match conflicts with a previous one, update it and count it as a mismatch. Where 𝑚𝑚𝑡 is the
number of mismatches in frame t.

3. Now all matching pairs for the current time frame are identified. The number of matches at
time t is 𝑐𝑡 . For each match, calculate the distance 𝑑𝑖𝑡 between object 𝑜𝑖 and its hypothesis ℎ 𝑗

in frame t.
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4. Any unmatched ℎ 𝑗 are treated as false positives, and any unmatched 𝑜𝑖 are treated as misses.
Let 𝑓 𝑝𝑡 and 𝑚𝑡 be the number of false positives and misses at time t, respectively. Also, the
total number of objects present at time t is 𝑔𝑡 .

Multiple Object Tracking Precision measures how accurately a tracking system predicts the po-
sitions of objects across video frames. It is calculated by averaging the position errors between the
predicted and actual object locations in all frames.

𝑀𝑂𝑇𝑃 =

∑
𝑖,𝑡 𝑑

𝑖
𝑡∑

𝑡 𝑐
𝑡

(1)

where
𝑑𝑖𝑡 = distance between the predicted i object and its matched ground truth object at t
𝑐𝑡 = represents the number of correct matches between predicted and ground truth detections in
frame t

A higher MOTP value indicates larger errors and therefore poorer tracking precision. This metric
assesses only the accuracy of the localization of objects and does not assess the tracker’s ability to
maintain identities, follow paths of motion, or cluster objects.

Multiple Object Tracking Accuracy is another measure used to assess tracking performance,
but does include missed detections, false positives, and identity switches. MOTA reflects how
accurately and consistently the tracker detects and maintains the identities of a multitude of objects.

M𝑂𝑇𝐴 = 1 −
∑

t
(
mt + f 𝑝t + m𝑚𝑒t

)∑
t gt

(2)

where:
𝑚𝑡 = number of misses at time t
𝑓 𝑝𝑡 = number of false positives at time t
𝑚𝑚𝑒𝑡 = number of mismatches at time t (identify switches)

A high score of MOTA means the model is linking detections across frames to create object tracks
with fewer errors. The total errors found is divided by the total number of ground truth objects
across all frames. This way, a fair assessment is made for tracking, even for datasets with large
numbers of objects.

Identity F1 Score is a measure used in multi-object tracking to quantify the accuracy of identity
assignments or measure the extent to which the tracker maintained correct object identity over time.
A higher IDF1 score reflects better tracking performance in maintaining correct object identities
through frames.

ID precision I𝐷𝑃 =
I𝐷T𝑃

I𝐷𝑇𝑃 + I𝐷𝐹𝑃
(3)

ID recall I𝐷𝑅 =
I𝐷𝑇𝑃

I𝐷𝑇𝑃 + I𝐷𝐹𝑁
(4)

I𝐷𝐹1 =
2 × I𝐷𝑇𝑃

2 × I𝐷𝑇𝑃 + I𝐷𝐹𝑃 + I𝐷𝐹𝑁
(5)

IDTP = Identity True Positives. Correctly matched detections with the correct identity.
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IDFP = Identity False Positives. Predicted detections that were assigned the wrong identity.

IDFN = Identity False Negative. Ground truth detections that were either missed or assigned to the
wrong identity.

To compute ID scores, all video frames are analyzed together to establishmatches between predicted
and ground truth trajectories. This matching process is modeled as a bipartite graph problem, aiming
to maximize the number of frames where predictions align with the correct ground truth objects.
Precision, recall, and the F1 score are then calculated based on a one-to-one correspondence between
predicted and actual trajectories, without considering the specific causes of tracking errors [3].

Higher Order Tracking Accuracy is a state-of-the-art evaluation metric that computes the average
score of all matched detections and does not count unmatched detections. It presents a fair evaluation
by measuring detection and association accuracy, which is a better indicator for measuring tracking
performance [4].

H𝑂𝑇A =
√

D𝑒𝑡𝐴 · A𝑠𝑠𝐴 (6)

DetA - detection accuracy, measures how well the tracker detects objects (recall vs. false alarms)

AssA - association accuracy, measures how well the tracker maintains object identities over time.

A key component of HOTA is the function A(c), which quantifies the similarity between predicted
and ground-truth trajectories for identity c. To evaluate association accuracy HOTA introduces [4]:

• True Positive Association TPA(c): the predicted and ground-truth IDs both correctly match
c.

• False Negative Association FNA(c): the ground-truth ID is c, but the prediction is incorrect
or missing.

• False Positive AssociationFPA(c): the predicted ID is c, but it either mismatches the ground-
truth or corresponds to no real target.

A (c) = |T𝑃𝐴 (c) |
|T𝑃𝐴 (c) | + |F𝑁𝐴 (c) | + |F𝑃𝐴 (c) | (7)

By adding these association types, HOTA captures errors in a way that closely aligns with human
intuition of what ”correct tracking” should look like.

7. RESULTS ANALYSIS AND COMPARATIVE STUDY

In this chapter, we have provided a detailed analysis and a comparative survey of the three popular
MOT algorithms (e.g. SORT, DeepSORT and JDE) executed on applied to challenging real-world
video sequences from the MOT16/train and MOT17/train datasets.

The goal of this work is to analyze the strengths and weaknesses of different trackers across various
situations under a common set of performance metrics and controlled scenarios.
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While there is no need to introduce these datasets and their annotations further, it is worth men-
tioning that both MOT16 and MOT17 are part of the MOTChallenge benchmark, which is known
for providing challenging, complex urban scenes with heavy occlusions and unpredictable camera
motion in congested scenes. All of these are one of the main challenges faced by most real-time
tracking systems.

The MOT16 and MOT17 datasets are both focusing on pedestrian tracking in real-world scenar-
ios. While they share the same set of video sequences and annotations, the key difference lies in
the detection sources provided. MOT16 has a single set of detections generated using the DPM
(Deformable Parts Model) detector, while MOT17 extends this by including three different sets of
detections per sequence, using DPM, Faster R-CNN and SDP (Scale-Dependent Pooling) detectors.
This allows for a more complete evaluation of how tracking algorithms perform under different
detection qualities. MOT17 is therefore a superset of MOT16, used for comparing the robustness
and adaptability of tracking methods.

7.1 Algorithms Used in Comparative Study

SORT (Simple Online and Realtime Tracking) is a simpler algorithm that does not require any
training because it operates entirely based on classical methods. SORT takes as input a series of
bounding box detections per frame, such as those provided in the det.txt files of the MOT16 and
MOT17 datasets.

These files contain the output of a pre-trained object detector (e.g. DPM, Faster R-CNN or SDP)
and include information about bounding box position, size, and confidence score for each detected
object.

SORT uses a Kalman filter to predict the next position of each tracked object based on its previous
state and thenmatches current detections to predicted positions using the Hungarian algorithm based
on Intersection over Union (IoU) cost. This approach allows SORT to associate objects frame by
frame without learning appearance features. [7].

While its simplicity enables high speed, especially when processing video in real time, it tends to
strugglewith occlusions and identity switches due to the absence of appearance-based re-identification.

FairMOT is a tracking algorithm that performs object detection and identity embedding in a single
network. In our setup, we used the pre-trained ReID model mars-small128.pb that was also used
in the paper for getting the results, which provides compact appearance features to help FairMOT
distinguish between people across frames. This model was trained on the MARS dataset, a large
person re-identification dataset. [6].

Since MARS do not share any data with MOT17, using this model does not affect the fairness of
the evaluation. The training was done only on MARS, so there is no shared data into the MOT17
sequences. This allowed us to benefit from better identity tracking without breakingMOTChallenge
rules or retraining MOT17 data.

The tracking of DeepSORT was performed in two stages. We first applied a person detector on
the MOT16 or MOT17 data and extracted appearance features using the MARS re-ID model. The
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results were saved as .npy, which contain the bounding boxes and scores for detections on each
frame. In the second step, these .npy files were used to perform tracking. We set min_confidence to
0.3 to filter out weak detections, and nn_budget to 100 to influence how many appearance features
are retained for each tracked person.

For JDE, we used the official implementation with a model pre-trained on both object detection
and person re-identification tasks using the same training data described in the original paper. The
model uses a ResNet backbone and is trained end-to-end on public pedestrian tracking datasets,
combining detection and embedding in a single network. Instead of the two-stage pipeline required
by DeepSORT, which involves tasks of detection and ReID, Since the pretraining data for JDE does
not overlap with the MOT17 evaluation set, this ensures a fair evaluation.

In the upcoming sections, we present a quantitative and qualitative comparison of these trackers
focusing on standard multitude-object tracking (MOT) metrics including MOTA, IDF1, identity
switches, and tracking precision to justify much more than performance scores but also the practical
tradeoffs between speed, accuracy, and robustness over the different methods.

7.2 Result Analysis on MOT16 and MOT17 Dataset

To evaluate and compare the tracking performance of JDE, SORT, and DeepSORT we used a
comprehensive set of standard MOT metrics including MOTA (Multiple Object Tracking Accu-
racy), MOTP (Precision), IDF1 (Identity F1 score), HOTA (Higher Order Tracking Accuracy), MT
(Mostly Tracked), ML (Mostly Lost), IDs (Identity Switches), FP (False Positives) and FN (False
Negatives). These metrics together evaluate how accurately and consistently each algorithm detects
tracks maintains object identities over time.

All three tracking methods are based on online tracking paradigms meaning they operate sequen-
tially frame-by-frame using only past and current information without any access to future frames.
This online design is particularly important for real-time or streaming applications where low-
latency inference Immediate response are required.

The experiments were done using Python 3.8 and PyTorch as the primary deep learning framework.
CUDA and GPU acceleration were utilized where supported. For the JDE algorithm tracking
tests were performed using RunPod.io with a high-performance NVIDIA RTX 4000 Ada GPU.
The environment was configured with CUDA 11.x and appropriate PyTorch GPU builds to ensure
compatibility and efficiency.

DeepSORT and SORT were run on local systems with moderate GPU resources since they require
significantly less computational power than JDE. This setup reflects a realistic environment and
highlights computational demands of end-to-end embedding-based trackers like JDE compared to
simpler modular trackers like SORT.

All the results after applying the algorithms described above on MOT16 dataset can be summarized
in Table 4. After reviewing the standard evaluation metrics of MOTChallenge, we can note that:

1. JDE is evidently better than both SORT and DeepSORT in all metrics.
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2. SORT has very weak tracking ability with low MOTA (24.91%) and extremely high FN
(68,904), which means it often misses objects. It tracks only 7.93% mostly (MT) targets and
loses 52.41% (ML).

3. DeepSORT is much better than SORT; its MOTA is 2.4× higher, and it has fewer identity
switches (689 vs. 2534).

4. JDE excels in MT (63,2%), IDF1 (68,27), and HOTA (57,18), suggesting that it maintains
identity better while also detecting and following objects more consistently.

5. However, both DeepSORT and JDE incur similar FP rates (~7k), while SORT has double that.

6. Deep learning methods (DeepSORT and JDE) clearly outperform SORT in all core metrics.

Table 4: Experimental results of algorithms using MOT16 dataset

Model MOTA ↑ MOTP ↑ IDF1 ↑ HOTA ↑ MT ↑ ML ↓ IDs ↓ FP ↓ FN ↓
SORT 24,908 77,883 29,719 26,402 7,93 52,41 2534 12913 68904
DeepSORT 60,39 81,606 64,367 53,047 34,81 15,86 689 6737 36369
JDE 72,67 81,703 68,273 57,184 63,20 5,35 803 7122 19899

TABLE 5 presents the output results on MOT17, from which the following observations can be
made regarding the performance of each algorithm:

1. JDE again outperforms both SORT and DeepSORT across all metrics, confirming its robust-
ness and consistency.

2. SORT shows moderate improvement performance: MOTA increases from 24,91% to 44,78%,
and IDF1 from 29,72% to 45,84%. But still suffers from high identity switches and tracking
instability.

3. DeepSORT continues to show stable performance: MOTA improves slightly to 47,68%, and
IDF1 climbs to 53,87%.

Table 5: Experimental results of algorithms using MOT17 dataset

Model MOTA ↑ MOTP ↑ IDF1 ↑ HOTA ↑ MT ↑ ML ↓ IDs ↓ FP ↓ FN ↓
SORT 44,777 84,656 45,835 41,133 16,60 39,74 4885 15477 167863
DeepSORT 47,684 84,137 53,871 45,698 19,78 37,36 1570 7478 167467
JDE 74,242 81,624 69,05 57,746 63,73 6,227 980 6137 21277

After analyzing the results from both MOT16/train and MOT17/train, all algorithms perform better
onMOT17, due to improved detection (using better detectors) quality. SORT shows some improve-
ment in MOTA and IDF1 but still lags due to high identity switches and tracking losses. DeepSORT
maintains stable results with slight gains and fewer errors than SORT. JDE always gives better
results than this one with the highest scores for all important metrics on both datasets. These results
can be taken as proof that deep learning-based methods, especially end-to-end models like JDE,
provide reliable and superior performances over different tracking conditions.
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Though SORT may be fast and easy, it will not work well for complex tasks because of its failure
to do any appearance-based associations. Therefore, current MOT research continues to push for-
ward deep learning-based approaches using transformer architectures with temporal attention plus
end-to-end optimization toward improving tracking accuracy as well as robustness in real-world
applications.

Table 6: Results of DeepSORT using 3 types of detectors on MOT17-04 dataset

Sequence MOTA ↑ MOTP ↑ IDF1 ↑ MT ↑ ML ↓ IDs ↓ FP ↓ FN ↓
MOT17-04-DPM 33,333 80,051 40,401 7,22 49,39 112 1082 30510
MOT17-04-FRCNN 54,027 89,423 62,428 18,07 50,62 93 41 21781
MOT17-04-SDP 75,717 86,711 72,614 50,62 33,73 91 157 11279

The results shown in TABLE 6 prove how much the choice of detectors affect the overall perfor-
mance of DeepSORT tracking algorithm. Out of three tested detectors: DPM, FRCNN and SDP;
DeepSORT with SDP gives best results with top MOTA (75.72%) and IDF1 (72.61%) along with
least false negatives (11,279) and identity switches (91). This proves that good detections lead to
precise and stable tracking. In contrast, DPM, the oldest and least accurate detector, results in the
poorest performance, with MOTA dropping to 33,33% and IDF1 to 40,40%, as well as increased
identity switches and tracking loss.

Another way of evaluating the performance of object tracking can be HOTA metrics that use a
graphic representation where x axis is represented by the alpha (𝛼) value and y axis represents the
score of each metric.

The 𝛼 parameter controls the trade-off between the detection and the association accuracy, ranging
from 0 to 1 (or from no association to only association). When 𝛼 grows, the consideration is more
on consuming consistent object identities over frames.

The HOTA-based evaluation shows that JDE achieves the highest overall performance with a HOTA
score of 0,57, thanks to strong detection accuracy (DetA = 0,62), recall (DetRe = 0,68), and high
precision (DetPr = 0,78) and localization (LocA = 0,84). The association accuracy is moderate
(AssA = 0.53), but robust detection places it at the top. DeepSORT comes next with a HOTA of 0.53,
showing balanced performance in both detection and association by having slightly better AssA
(0.54) and AssRe (0.60) compared to JDEwhile keeping DetPr and LocA similar; meanwhile SORT
has a HOTA of 0,26, due to low scores in both detection and association, particularly DetA (0,28)
and AssA (0,26), confirming its limitations in identity tracking caused by its lack of appearance
modeling.

The comparison between theMOT16 andMOT17 datasets shows that JDE is better than DeepSORT
and SORT in both HOTA and CLEAR MOT. JDE has the best HOTA scores,0,57 on MOT16 and
0,58 on MOT17. This means that it has a better ability to keep a balance between how well things
are detected and how well they are associated with identities. Strong detection performance (e.g.,
DetA = 0.63, DetRe = 0.69) and good association (e.g., AssA = 0.54, AssRe = 0.60) make it the
most robust tracker in different conditions.

HOTA is important and, in addition, to traditional metrics such as MOTA and IDF1 to evaluate
the quality of detection, association, and localization together. It provides a more comprehensive
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Figure 3: HOTA representation for MOT16 SORT

Figure 4: HOTA representation for MOT16 DeepSORT
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Figure 5: HOTA representation for MOT16 JDE

Figure 6: HOTA representation for MOT17 SORT

evaluation of tracking performance. This strongly suggests that practical approaches to multi-object
tracking will be based on deep learning, mainly those which unify detection and embedding in a
single deep network, such as in JDE. This study showed that deep, joint models provide the best
tradeoff of accuracy, stability, and identity preservation in multi-object tracking tasks.
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Figure 7: HOTA representation for MOT17 DeepSORT

Figure 8: HOTA representation for MOT17 JDE

8. CONCLUSION

The main aim of this project was to assess and review the performance of different tracking algo-
rithms using the image sequences from the well-known datasets MOT16 and MOT17. The three
main tracking methods reviewed were SORT, DeepSORT, and JDE due to their real-time perfor-

406



https://jaiai.org/ |November 2025 Journal of Artificial Intelligence and Autonomous Intelligence

mance, increasing use and demand in the research and commercial fields, and different methods
of associating objects over time. The study ranged from understanding how each method works
internally to running them on real sequences to also understanding their positive and negative aspects
along with the trade-offs between accuracy and efficiency.

We used both numerical measures such as MOTA, IDF1, and identity switches to assess perfor-
mance, and qualitative visual inspection to get helpful insights about each method’s performance.
SORT was the fastest and easiest algorithm and worked well because it did not require any training
and made predictions about motion by filtering for motion and making associations using the Hun-
garian algorithm. However, because it does not model an appearance model, it was very common
to see identity switches in crowded or occluded sequences.

DeepSORT was a marked enhancement over SORT. DeepSORT used ReID model-embedded ap-
pearance features, which allowed identity tracking to be preserved across frames for a longer du-
ration. However, DeepSORT utilized more hardware resources and required another detection
input. JDE emerged as an intriguing case from a joint detection and embedding perspective by
combining appearance features and detection within one algorithm and framework. This allowed
for the exclusion of the second detection files used for DeepSORT, which improved the speed for
tracking and reduced the need for processing resources while still being the highest computational
resource requirement among the reviewed procedures.

Collectively, this comparative study identified that no one method is perfect. For lightweight, real-
time scenarios with minor occlusions, via market detection SORT was applicable. DeepSORT was
fast and practical with solid robustness, and JDE showed promise as consideration for future unified
frameworks, especially when the use of more computational resources was available. Overall,
DeepSORT exhibited the best overall balance across the MOT16 and MOT17 sequences examined,
as it met the challenge of maintaining consistent identities throughout complex scenes, while still
being achievable in runtime.

Another important area is the consideration of optimization. Identifying opportunities to optimize
runtime performance for more complicated models (e.g., JDE or DeepSORT), for example, could
someday facilitate high accuracy tracking for real-time deployment by using methods or tools such
as model pruning, quantization or hardware acceleration. In some cases, we may also generate
domain-specific, purpose-built lightweight ReID models that may better optimize overall memory
footprint, as well as tracking performance (i.e., traffic monitoring, or retail contexts).

Finally, placing the MOT algorithms in the context of a broader system (for example, for behavior
analysis, anomaly detection or crowd monitoring) can be an extension of this work. Furthermore, it
shifts the focus from just achieving tracking outputs to utilizing tracking outputs, which is becoming
ever more prominent in relation to the use of tracking outputs in the application domain, such as in
smart surveillance or autonomous navigation.

In general, this study presented three influential MOT algorithms and their advantages and draw-
backs, both of which are essential to consider when seeking application in real-world situations.
Although much progress has already been made into improving MOT research, the road to highly
accurate, efficient tracking systems which can be accessed by everybody is still ongoing. Future
workmust therefore not only concentrate on improving accuracy as an objective, but also on looking
for ways to utilize MOTs in practice and how we might maintain them over time.
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